You are currently browsing the tag archive for the ‘direct product’ tag.

Recently, I have been reading some algebra. This has been immensely enjoyable; I had forgotten how much I used to like algebra. The material here is by no means advanced, but relies on some basic definitions from group theory.

Suppose I have two groups H and K. Can we combine them together? I learnt some years ago now that there is a straightforward way of forming a ‘sum’ of these two objects: One takes the cartesian product H\timesK, and bestows it with a group operation in the most basic and obvious way possible: (h,k)\ast(h’,k’) = (hh’,kk’). The group that results is known as the direct product of H and K.

The same can be done with vector spaces: Given two vector spaces V and W, I can form the direct sum of them, which is thought of as the vector space consisting of ordered pairs of the form (v,w) with v in V and w in W. It is easy to guess what the rules for addition and scalar multiplication must be. However, soon after learning these two definitions, I began to realise that at least a small amount of wool was obscuring my eyes: Suppose I have a vector space X and two subspaces Y and Z such that every vector x in X can be written uniquely in the form x = y + z, for y in Y and z in Z. I would then be invited to observe how this means that X was the direct sum of Y and Z. This didn’t sit well with me. It clearly wasn’t quite the same thing: There was no cartesian product; there was no way that x = y + z was the same as x = (y,z).

Read the rest of this entry »

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 88 other subscribers